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This thesis 1s primarily an investigation of the structure
of a very general algebraic system, the halfgroupoid, in rela-
tion to a particular topology, the (left) ideal topology. An
extension of this study to the theory of graphs is discussed
in detail, while some other applications and related problems
are mentioned only briefly.

If H is a halfgroupoid with binary operation o, and I. is

L
a subset, possibly empty, of H such that H o I. &I then I

L L> L
is a left ideal for H, and the set of all such left ideals on
a given halfgroupoid 1s proven to constitute a topology with
completely additive closure. The mapping of the family of all
halfgroupoids into the family of all possible (left) ideal
fopologies is found to be a many-to-one correspondence, and
examples of different halfgroupoids having the same topology
are given. Although the halfgroupoid operation need not be
continuous under the (left) ideal topology, a sufficient con-
dition for continuilty is presented. Also, both necessary and
sufficient conditions for the topological separation axioms
Ty and T; to be satisfied are proven, and the property of

topological connectedness is investigated specifically in

terms of (left) ideals.



Extending these results, mappings between the family of
all halfgroupoids and the family of all directed graphs are
constructed in such a way as to establish a topological cor-
respondence between these two mathematical systems, whereby
the (left) ideal topology is found to be identical to the
previously known digraph topology. A short synopsis 1s given
of research done elsewhere on the problem of relating algebra
and topology from the converse point of view, and brief men-
tion is made of various other possibilities for extending or
applying the results in this thesis to other filelds of mathe-
matics. Finally, in the Appendix there is a short outline
of some other ways of establishing connections among algebra,
topology, and graphs to yield useful results appropriate to

various situations.
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INTRODUCTION

One popular and practical trend in mathematical research
is that toward attempting to discover fundamental similarities
between the many diverse and increasingly specialized fields
of mathematics. Generally it is hoped that through these
efforts certain basic principles will be found to be present
and consistent throughout various subjects in mathematics,
thereby tending to increase the unity and general understanding
of all mathematical idesas.

In this thesis we follow this trend by investigating
some relationships between the most general algebralc system -
the halfgroupoid, which consists of a set H of elements and a
binary operation - and a specific topological system - the
(left) ideal topology, in which the open sets are subsets
I H such that H o I& I. Our approach is primarily that of
interpreting certain topological properties in terms of the
structure of the halfgroupoid.

In Chapter One we explain the general notation to be
used throughout our discussion and present some preliminary
definitions of some basic algebraic concepts. In Chapter Two
we establish our (left) ideal topology on an arbitrary half-
groupoid and then study such things as continuity of operation

in the halfgroupoid, the topological separation axioms, and




topological connectedness.

In Chapter Three we extend our analysis of algebra and
topology to include a third field of mathematics, the theory
of graphs. We show that because a halfgroupoid may be thought
of as a set on which is defined a ternary relation, while a
directed graph 1s a set on which is defined a binary relation,
these two mathematical systems are somewhat naturally related,
and we can, in fact, formulate a topological correspondence
between them Dby defining a mapping between halfgroupoids and
digraphs under which our (left) ideal topology proves to be
ldentical to the digraph topology previously developed by
Ahlborn (see [1]). Thus we create a three-way connection
between algebra, topology, and graph theory. Next, we discuss
briefly a problem utilizing an approach which is basically
converse to ours, and finally we mention various ways in which
the results presented in this fhesis may be applied or ex-

tended to other fields of mathematics.



CHAPTER ONE

PRELIMINARIES

We begin by explaining in general terms the notation
fo be used throughout this thesis. In the second section
we present some background material, primarily in the form

of various standard definitions.

1.1 NOTATION

Throughout our discussion we use fairly standardized
notation, especially as found in Doyle and Warne [8],
Kelley [10], and Bhargava [3]. For example, sets are denoted
by capital letters A, B, C,..., and families of sets by large
script letters A, B, C,... . Individual elements of sets are
denoted by small letters a, b, ¢c,..., which may be underlined
fo avoid confusion with other words; a statement to the
effect that a belongs to the set A is often shortened to
a € A. The empty set is denoted by ¢, and the complement of
the set S, by g. A distinction is made between a general
subset A& B, and a proper subset Ae=B.

The set operations of union, intersection, and Cartesilan
product are written U, f), and x, respectively, and a

notation such as rT{Sp} indicates that the intersection is
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taken of all sets Sp having the particular property under
consideration, whereas ED{SQ} indicates that the intersection
of the sets Sa is taken over an arbitrary index set, of
which o is a general element.

Other, more specific, notation will be explained as the

need arises, as in the statements of definitions or theorems.

1.2 DEFINITIONS

In this section we define some of the basic concepts
used 1n algebra, particularly in connection with halfgroup-
oids (see Doyle and Warne [8] or Bruck [7]. Most of these
terms are ones to which we repeatedly refer throughout our
discussion; a few others are included for their general
interest. Terminology related to other fields, such as
topology and graph theory, will be introduced when pertinent

to the discussion of a particular topic.

Definition 1.2.1 A mathematical system i1s a set of elements

and at least one operation defined for the set. (This opera-
tion may have certain properties and may be subject to
various rules.) The order of a system 1s the cardinality of
the set of elements in the system.

We note that because a mathematical system 1s thus
identified with its set of elements, there will be 1little
chance for confusion if we use the same capital letfer to

denote either the system or the set of elements comprising it.




Definition 1.2.2 A binary operation, denoted by o, and

defined for a set S, 1s a single-valued mapping of a set

D& (S x S), where (S x S) = {(a,b): a,b ¢ S}, onto a set
R&m S. The set D is called the domain of definition of the
operation, and the set R is called the range of image values.
R is the empty set if, and only if, D is also empty; in such

a case, we have a null system.

If (a,b) € D, we say a o b is defined, and if the image
in R of (a,b) is ¢, we write a o b = ¢. If (a,b) ¢ B, we say
a o b is undefined.

If M and N are subsets of S, then M © N is the subset
of R consisting of the images of the elements contained in
(M x N)f) D; that 1is, Mo N = {c: a o b =1c¢c, a ¢ M, b ¢ N}.

The binary operation in a system of finite order is
often completely exhibited in a Cayley table; we will have
occasion to use this method in several examples to be gilven

later.

It is very important to note here that, for our purposes,
it is understood that a mathematical system has a certain
property if this property 1s present wherever the operation
i1s defined. Thus it may be assumed that, whenever the oper-

ation is undefined, any requirement is satisfied vacuously.

Definition 1.2.3 A halfgroupoid H is a mathematical system

consisting of a nonempty set of elements for which is defined

a binary operation having no special properties.




Definition 1.2.4 A groupoid G is a halfgoupoid H in which

the domain of definition of the operation is the entire

Cartesian product H x H.

The remaining definitions in this section are formulated
in terms of halfgroupoids, but of course apply 1n particular

to groupoids.

Definition 1.2.5 A subhalfgroupoid S of a halfgroupoid H

is a subsystem consisting of a nonempty subset of elements

of H, such that S o S&S.

Definition 1.2.6 An antihalfgroupoid A of a halfgroupoid H

is a subsystem consisting of a nonempty subset of elements

Y
of H, such that A o A& A.

We note that when the preceding two terms are applied
to groupoids rather than halfgroupoids, the infix "half" is

deleted so that the terms become subgroupoid and antigroupoid.

Definition 1.2.7 A left ideal for a halfgroupoid H is a

subset I;, & H such that H o Iy & Iy. Similarly, a right

ideal is a subset IREH such that IR o He&e T A two-sided

R*
ideal, as the name implies, is a subset I & H which 1s both

a left and right ideal. A point ideal is any ideal consisting

of a single element.
Here we make a special note of the fact that we will
consider the empty set ¢ to be a trivial ideal, either left,

right, or two-sided.




Because our discussion throughout this thesis is limited
in general to consideration only of left ideals, the defini-
tions below are stated so as to correspond to the left ideal,
i.e. in terms of the right side. Extensions of these defini-
tions to the left side, or both sides, can be made in an

obvious manner.

Definition 1.2.8 If a,b ¢ H, then a is a right factor of b

and b is a left multiple of a, in notation a/b, 1f there

exists an element ¢ € H such that ¢c ¢ a = b.

Definition 1.2.9 An element a ¢ H is prime if the set of

(right) factors of a 1s the empty set or {a} itself. An
element which is not prime is called composite. An element

a ¢ H for which a ¢ a = a 1s called an idempotent element.

Definition 1.2.10 An element a ¢ H is a right zero element

if for all x ¢ H, x o & = a.

Definition 1.2.11 An element a ¢ H is a right unit element

if for all x ¢ H, x o a = X.




CHAPTER TWO

RESULTS

In this chapter we establish a point-set topology on an
arbitrary halfgroupoid and then investigate the relationships
between some basic topological properties and the structure
of the halfgroupoid. We refer to Kelley [10] for definitions

of terms related to topology.

2.1 THE IDEAL TOPOLOGY

Definition 2.1.1 A topology defined on a set S is a mathe-

matical system consisting of a family T of subsets of S, with
the operations of union and intersection, such that the
following are true:

i) S and ¢ are members of T;

ii) the union of any number of members of T
itself belongs to T;

iii) the intersection of any two, and hence any
finite number of, members of T itself
belongs to T.
The set S, along with a topology T on S, constitutes a

topological space (S, T). The members of T are called

open sets in S and their complements are closed sets. An

(open) neighborhood OX of a point x € S is any (open) set




containing x.

A family B of subsets of S 1s a base for the topology T
if the family of all possible unions of members of B is the
family T.

A family S of subsets of S is a subbase for the topology T
1f the family of all finite intersections of members of S

ylelds a base B for T.

Definition 2.1.2 A topology T 1s saild to have the property

of completely additive closure if the intersection of any

number of members of T 1is itself a member of T.

Theorem 2.1.1 The family I of all left ideals for a half-

L
groupoid H constitutes a topology with the property of com-

pletely additive closure.
Proof: 1) Clearly, H ¢ IL because H o H&H, and ¢ € IL’
by definition.
ii) Let {ILG}’ where o is the general element of an
arbitrary index set, be a set of elements of IL. Then,
y{ILa} el , for if x « Q{ILG}’ then x e I, for some fixed k,
and y o x e I, for all y ¢ H. Hence, y o X ¢ Q{ILa} for
all y ¢ H and, because x 1s arbitrary, for all x ¢ H{ILG}.
That is,H o LHIL JSY(T ), and NI ) e Tp.
iii) Also, Q{ILG} el;, for if x ¢ Q{ILQ}, then x

belongs to every I and y o x must thus belong to every I

Lo La?

for all y € H. Hence y © x ¢ Q{ILa} for all y € H and,

again because x is arbitrary, for all x e GHILG}. That is,
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He [MI JE NI}, and QI } e Ip,.

It is a well-known result that, in a topology T having
completely additive closure, the family C of closed sets
under T satisfies the same axioms as the family 0 of open
sets. Thus one can obtain from T the dual topology T* by
considering the family C to be open sets. Hence it is actu-
ally immaterial in Theorem 2.1.1 whether we designate'the
family of left ideals to be the open or closed sets; in either
case they define a topology. However, in obtaining various
results relating halfgroupoids and topology it is more con-
venient and perhaps more natural to consider the ideals to be

open sets. Therefore, we make the following formal definition:

Definition 2.1.3 The (left) ideal topology on a halfgroupoid H

is the family of all (left) ideals for H.
Since throughout our discussion we do consider only left
ideals, for simplicity we represent by (H,I) the space of
the (left) ideal topology on a halfgroupoid. This enables
us to use the convenient notation I, to denote a left ideal

containing the point x (see Definition 2.1.1).

We should point out here though that, from the proof of
Theorem 2.1.1, it is obvious that the set of all right ideals
in H would also constitute a topology, as would the set of all
two~sided ideals. However, the set of all possible right,
left, and two-sided ideals in general is not closed under

finite intersections and must therefore be used as a subbase
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to obtain a topology for H, as shown by the following example:

Example 2.1.1 Let the halfgroupoid H be defined as 1n this

Cayley table:

Then T

L

is neilther a right nor a left ideal for H.

ILlJ IR be a subbase, we obtain T = {¢,H,{a,c},{b,c},{c}},

{¢,H,{a,c}}
[¢,H,{a,c},{b,c}}.

and 1_ =

R

which is indeed a topology on H.

It is also interesting to note here that, whereas a

However, letting

{6,H,{b,c}}, so the family

But {a,c}N{b,c} = {c}, which

given halfgroupoid determines a unique (left) ideal topology,

a whole family H of halfgroupoids with the same elements,

but different operations, may have identical (left) ideal

topologies:

Example 2.1.2 Consider the following halfgroupolds:
a b c d a b C d
a - c c d a | b - c a
b c b - - b - a c d
C - a c a c b c - -
d b - - b d b C - C
1 = {¢,H,{c},{a,b,c}} 1 = {¢,H,{c},{a,b,c}}
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It would of course be useful to know exactly which halfgroup-
oids have a given (left) ideal topology, but it appears from
the above examples that there is no simple way of obtaining

this information or of determining such things as the maximal

and minimal halfgroupoids associated with a particular topology.

It remains an open question whether these problems might be
solved by defining an ordering on the set H, perhaps with

regard to the (left) ideal topology.

2.2 CONTINUITY OF OPERATION

In the general theory of topological groups, it is
required that the group operation be continuous under a given
topology. In this section we present a sufficient condition
for the operation in a halfgroupoid to be continuous with

respect to the (left) 1deal topology.

Definition 2.2.1 The binary operation o in a halfgroupoid H

is said to be continuous under a topology T if, whenever

& o b =c in H, for each O, ¢ T, there exist O Op € T, such

a,

that Oa o O goc.

b

Theorem 2.2.1 If, for every composite element ¢ in a half-

groupoid H, every (right) factor b of ¢ is such that b e fHIC},
then the operation in H is continuous under the (left) ideal
topology 1I.

Proof: Consider any a,b,c ¢ H for which a o b = ¢, and let

I, ¢ T be an arbitrary neighborhood of ¢. If b = ¢, then




I oI &1
a c C
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for any Ia e T, and the continuity condition is

satisfied. If b # ¢, then ¢ is composite and, by hypothesis,

b e n{IC};

neighborhood

then b ¢ (Iblﬂ I,), where Iy eI is an arbitrary

of b. Let (I, N I,)

!
= Ib.

1 1
Then Ia o IbQI

and again the continuity condition is satisfiled.

Clearly Theorem 2.2.1 gives a very strong suffilclent

[t
b =1

condition for continulty of operation 1n a halfgroupoid, and

this condition 1s certainly not a necessary one, as shown by

the followlng example:

Example 2.2.1

Given the halfgroupoid

a b C d_
a b c b a
b - - b C
C C b - b
d a b c -

I = {¢:Hs{b,0}>{a’b90}}’

it can be shown that the operation in H is continuous with

respect to the (left) ideal topology; however a/b, but

a £ MN{Iy} because a £ {b,cl.

It is still an open question whether the hypothesis of

Theorem 2.2.1 can be weakened in such a way as to constitute

both a necessary and sufficient condition for continuity of

operation in a halfgroupoid with respect to the (left) ideal

topology.

5
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2.3 SEPARATION AXIOMS

A general topological space may have various special
properties, among which the separation axioms are the simplest.
In this section we investigate these axioms in terms of the

(left) ideal topology on a halfgroupoid.

Definition 2.3.1 A topological space (S,T) is said to

satisfy axiom T0 if, glven two different elements of S, there

is an open set in T containing one and not the other.

Lemma 2.3.1 If two elements a,b ¢ H are such that a/b, then

b e f]{Ia} for I, ¢ I.
Proof: Consider an arbitrary Ia eI . Since a/b, there exists

X ¢ H such that x o a = b, Hence b € (H o Ia)EE I or

a’

b e I,. Thus, because I_ is arbitrary, b e M{I,}.

Theorem 2.3.1 The (left) ideal topology I on a halfgroupoid H

satisfies axiom T, if, and only if, for every (right) nonzero
a € H, there exists an Ia e I such that for all b e I,, b # a,
b is not a (right) factor of a.

Proof: IF Let a,b ¢ H, where a # b. If a is a (right) zero
element then H o {a}l & {al}l and {al}l is a point ideal, so

axiom T, is satisfied. If a is not a (right) zero element,
by hypothesis there exists some Ia e I containing no (right)
factor of a. If b £ I_, axiom T, is satisfied. If b ¢ Ia’
then Iafﬁ {3} contains b, but not a, and is an open set in I

because H o (Ia N {g}) & (H o Ia)_c_ (Ian {3}), since
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(H o Ia)g;Ia and (H o Ia)GE{gJ. Hence, again, axiom Ty is
satisfied.

ONLY TF Assume there exists a (right) nonzero a ¢ H
such that each I eI contains a variable x € H, x # a, where x
is a (right) factor of a. Then f1{Ia}, itself a neighborhood
of a, contains some b ¢ H, b # a, such that b/a. But then
every Ia contains b, and, by Lemma 2.3.1, a € f]{Ib} so every I

b
contains a, hence (H,I) does not satisfy axiom Ty.

Definition 2.3.2 A topological space (S,T) is said to satisfy

}
axiom T, if, given two different elements a,b € S, there

exlsts one open set Oa e T not containing b, and another open

set O ¢ T not containing a.

Theorem 2.3.2 The (left) ideal topology I on a halfgroupoid H
satisfies éxiom T, if, and only 1if, every element of H is a
point ideal.
Proof: IF Obvious.

ONLY IF Assume there exists an element a € H which
is not a point ideal. Then M{I_ } # {a} and there must exist
some b € H, b # a, such that b ¢ f\{Ia}. But then every I,
contains b, contradicting the fact that (H,J ) satisfies

axliom T,.

Corollary. The topological space (H,I) satisfies axiom T
if, and only if, every element of H is a (right) zero element.
Proof: IF Since a (right) zero element is a point ideal,

(H,I) satisfies axiom T; by Theorem 2.3.2.
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ONLY TIF Suppose there exists a € H such that for
some x ¢ H, x o a = b, where b # a. Then a/b and, by Lemma

2.3.1, b ¢ f]{Ia}, so (HJ ) does not satisfy axiom T,.

We see from Theorem 2.3.2 that the conditions under
which the (left) ideal topology on a halfgroupoid satisfies
axiom T; completely characterizes (H,I). In fact the only
possible variation in the structure of the halfgroupoid is in
the domain of definition of the operation, as shown by the
above Corollary. Thus, although there are several other
standard topological separation axioms, all of them imply Ty,
so our investigation of these axioms in relation to the (left)
ideal topology 1s now complete.

The following simple examples help to illustrate the
variation in the operation on a halfgroupoid when different

separation axioms are satisfied by the (left) ideal topology:

Example 2.3.1 In the halfgroupoid

a b c

a a b c

b a c b

¢ a b c

I = {¢,H,{a},{b,c}}

we see that ¢ is a (right) nonzero element, but every I, e I
contains b and b/c; thus, by Theorem 2.3.1, I does not even

satisfy axiom Ty.




Example 2.3.2 1In the halfgroupoid

a b c

a a b c

b a b b

] a b c

I = {¢,H,{a},{b},{a,b},{b,c}}

we see that ¢ is a (right) nonzero element, but I, = {b,c}
contains no (right) factor of c¢; thus, by Theorem 2.3.1,

I satisfies axiom TO, but not T,, by Theorem 2.3.2.

Example 2.3.3 1In the halfgroupoid

a b c

a a b c

b a b c

c a b c

I = {¢,H,{a},{b},{c},{a,b},{b,c},{a,c}}

we see that every element is a point ideal and, by Theorem

2.3.2, 1 satisfies axiom Tl.

2.4 CONNECTEDNESS

In this section we discuss the conditions under which

the (left) ideal topology on a halfgroupoid is connected.

Definition 2.4.1 A topology 7 on a set S is connected if

17

S is not the union of two nonempty, disjoint, open sets in T.
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Theorem 2.4.1 The (left) ideal topology I on a halfgroupoid H

is connected if, and only if, there is no I ¢ I such that T ¢ I.
Proof: This theorem is essentially a restatement of the defi-
nition of topological connectedness in terms of the (left)
ideal topology on a halfgroupoid, but Lemma 2.4.1, below,

shows under what conditions this topology actually is connected.

Lemma 2.4.1 Given any nonempty (left) ideal I in a halfgroup-

n
oid H, T is also a (left) ideal in H if, and only if, I is a
subhalfgroupoid and (I o NI is empty.
Y ny n N hv
Proof: IF Since (Ho I) = (I UI) o = (I o I)U(I o I),

4V

A" " .
= I, because I is a

and I o ?fg'f, by hypothesis, and I o

He e

subhalfgroupoid, then H o ’fgrf and rf is a (left) ideal in H.

ONLY IF If T is not a subhalfgroupoid, then T o T T
and f is thus not a (left) ideal. Similarly, if (I o %)17 I
is nonempty, then I o %QE f and agailn % cannot be a (left)

ideal.



CHAPTER THREE

APPLICATIONS

Because of the very general nature of the algebraic
system which we have been discussing, and because, as the
results in the preceding chapter indicate, there are some
rather simple relationships between this algebralc system and
a different type of mathematical system, a topology, there
appear to be many opportunities for utilizing and extending
the results which we have obtained herein.

In this chapter we introduce in some detall a particular
extension of our connection between algebra and topology to
include a third mathematical structure, the directed graph.
We then discuss briefly some already known results from work
being done on a problem related to our own. Finally, we
present a short general survey of some possibilities for
applying the notion of an ideal topology on a halfgroupoid

to various other types of mathematical problems.

3.1 THE DIGRAPH TOPOLOGY

First we must state some basic definitions from the
theory of graphs. For further explanation of notation related

to graph theory and a more complete analysis of graphs,

19
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directed graphs, and the digraph topology, we refer to
Ahlborn [1], Berge [2], Bhargava [3], [4], and Bhargava and

Ahlborn [5].

Definition 3.1.1 A binary relation, denoted by ‘FQ, defined

on a set S, 1s a set E of ordered pairs, where ¢ & E & (S x 3).
This set E may or may not have various speclal properties.
If (a,b) ¢ E, we say a is related to b, or a R b=1.

n
If (a,b) ¢ E, then a is not related to b, or a WA b = 0.

We see that by extending the concept of a binary relation,
a set of ordered palrs, as defined above, to a ternary relation,
a set of ordered triples, we find that a binary operation is
exactly analogous to a ternary relation, and hence now make
the following alternate definition of an operation (see

Definition 1.2.2):

Definition 3.1.2 A binary operation definedfor a set S is a

set F of ordered triples, where ¢&=F & (S x S x S).
We note that in terms of our original definition

F = {((a,b),c): a o b =¢ in H},

Definition 3.1.3 A digraph I' (directed graph) consists of

a set of elements A and a binary relation WM defined on the
set.

The digraph T'(A,E) is represented graphically by a set
of points, or vertices, A = {a,b,c,...}, and a set of directed
edges, E = {(a,b); a,b e A4, a W b = 1}, joining certain

pairs of these vertices.
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Definition 3.1.4 The digraph topology T on I'(A,E) is the

family of all subsets UG A such that (J x U) M E = ¢. That
is,the set U& A is open under t if there are no edges in E
originating in B which terminate in U,

It has been shown (Anlborn [1], Bhargava and Ahlborn [5])
that the family of all such subsets U A does indeed consti-
tute a topology on the digraph T(A,E). Furthermore, the map-
ping of the set of all possible digraphs onto the set of all
digraph topologles is a many-to-one correspondence, as is the
mapping of the set of all halfgroupoids onto the set of all

(left) ideal topologies (see section 2.1).

We now construct mappings between the class H of all
halfgroupoids and the class D of all digraphs such that under
these mappings the set of all halfgroupoids H ¢ H having a
particular (left) ideal topology I corresponds to the set of
all digraphs T ¢ D having the digraph topology Tt where I and =
are identical topologies.

In order to facilitate notation and to emphasize the
similarities between halfgroupoids and digraphs, in the
following discussion we will denote a halfgroupoid as (H,F),
where H, as usual, is the set of elements, and F is the binary

operation for H, as in Definition 3.1.2.

Construction

PART 1. Let H be the family of all halfgroupoids and let D

be the family of all digraphs.
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Let ¥ be a mapping of the set H into the set D such
that ¢(H,F) = I'(H,E), where E = {(c,b): ((x,b),c) ¢ F}.

Let v~! be a mapping of the set D into the set H
such that v~ ![r(H,E)] = (H,F), where F = {((c,b),c)5 (c,b) € E}.
PART II Let H be a set of elements of arbitrary order n,
and let T be an arbitrary topology on the set H.

Let H, = {(H,Fy): 1 =1,2,...}, where the (left)
ideal topology on (H,Fi) is T.

Let D, = {P(H,Ei): i=1,2,...}, where the digraph

topology on T(H,Ey) 1is T.

In the above construction we see that the mapping ¢ is
a many-to-one correspondence of halfgroupoids to digraphs,
and that w‘l, while not an exact inverse of ¥, has been mod-
ified only slightly in order to make it also a many-to-one
(actually a one-to-one) mapping of digraphs onto halfgroupoids.
The following theorem shows that these mappings v and P 1
establish a topological correspondence between halfgroupoids
and digraphs in such a manner that the (left) ideal topology

is exactly the same as the digraph topology.

Theorem 3.1.1 Given the mappings ¢:H > D and v~ !:D > H as

in Part I (above), and given the sets H& H and D &0 as

in Part II, then (a) v(Hy) = Dy and (b) v™1(D,) s=mH,.
Proof: (a) Let (H,Fj) e Hy be an arbitrary halfgroupoid
having the (left) ideal topology T, and let w(H,FJ) = F(H,Ej).

Let 1 be the digraph topology on F(H,Ej). We have to show
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T =T, Let O € 1, but assume O £ T. Then H ¢ 0E0 and there
must exist b,c ¢ H, b ¢ 0, ¢ ¢ 8, such that [(x,b),c) € Fj'
But then (c,b) ¢ Ej’ so (c,b) ¢ [(§ x 0) f)Ej], contradicting
the fact that O € t. Therefore, necessarily O ¢ T and,
because O was chosen arbitrarily, 1@ T. Conversely, let

O ¢ T, but assume 0 £ t. Then (8 x 0) N Ej # ¢ and there exist
b,e e H, b € 0, ¢ € O, such that (c,b) ¢ E,. However, this
implies there is at least one x € H such that ((x,b),c) £ Fj’
and this 1in turn implies H o 0 0, contradicting the fact
that O ¢ T. Therefore, necessarily 0 ¢ 1 and, again because O
was chosen arbitrarily, T@mt. Finally, since 1 &T and

T&k 1, 1 =T and I‘(H,Ej) e Dy, showing that ¥(H;) & Dy.
To show that y(Hy) = Dy we first prove part (b).

(b) Let T(H,E,) € Dy be an arbitrary digraph having
the digraph topology T, and let ¢—1[F(H,Ek)] = (H,F ). Let 1
be the (left) ideal topology on (H,F, ). We have to show
I =T, Let O ¢TI, but assume O ¢ T. Then (8 x 0) r\Ek # ¢
and there exist b,c ¢ H, b ¢ 0, ¢ ¢ 8, such that (c,b) € Ej.
But this means ((c,b),c) ¢ F, and H o 0§ 0, contradicting
the fact that 0 ¢ I . Hence necessarily O € T and, because
O is arbitrary, I & 7T. Conversely, let O ¢ T and assume O ¢ I.
Then H o 0@ O and there exist b,c ¢ H, b ¢ 0, ¢ € O, such
that ((c,b),c) e Fy. (We note that by the construction
of (H,Fk) automatically the general element [(x,b),c) £ Fk.)

But ((c,b),c) e Fy implies (c,b) e Ey, so (c,b) e [(§ x 0)N E, L
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contradicting the fact that 0 ¢ T. Hence necessarily O ¢ I
and, because O is arbitrary, TS1. Finally, because [ =T

and T&=T1,1 =T and (H,F ) ¢ H;, showing that V(D) = H,.

It 1s now clear that ¥(Hy) = D, since every F(H,Ei) e Dy has
the inverse image in H, given by the definition of y~! in

Part I of our construction.

Summarizing briefly, in this section we began by redefin-
ing a bilnary operation as a ternary relation, so as to make
more apparent a rather natural connection between halfgroupoids
and digraphs. We then presented the standard definition of
the digraph topology and showed that our (left) ideal topology
is identical with the digraph topology under appropriate map-
pings between halfgroupoids and digraphs, thereby establishing
connections among the three different mathematical fields of

algebra, topology, and graph theory.

3.2 A CONVERSE PROBLEM

Throughout this thesis our approach to the study of the
relationships between an algebraic system and a topology has
been generally that of determining the structure of a half-
groupoid, given the properties of the corresponding (left)
ideal topology. A considerable amount of research has been
done by Hanson (see [9]) on a somewhat converse problem, that
of determining topological structures on a given algebraic

system. He limits his consideration almost entirely to groupolds
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and to those topologies under which the groupoid operation is

continuous (or compatible). He begins with an investigation

of topologically trivial systems (those algebraic systems for

which the only permissible topologies are the discrete and
indiscrete), and then continues, analyzing systems possessing
various types of more specialized topologles. He also studies

the concept of generalized ideal (a subset of a groupold G

whose complement is a basis of singleton sets for an admissible
topology on G). In general, Hanson's work is of a complemen-
tary nature to ours in the relating of algebra and topology,
and though there are probably meaningful ways of correlating
these two approaches, such a problem is beyond the scope of

this thesis.

3.3 CONCLUDING REMARKS

Whenever a significant relationship between apparently
different, but abstractly similar, mathematical systems 1is
discovered, the possibilities for applying the results are
automatically multiplied. Information known in terms of one
system can be more readily interpreted in terms of the other,
and solutions to problems in one field may often produce
corresponding solutions to similar problems in the related
field.

By first establishing a simple connection between algebra
and topology and then, in turn, relating these to directed

graphs, we have perhaps opened one way for problems in such




diverse fields as number theory, probability, statistics,
group theory, and point-set topology, to be considered from
several different points of view. In this way it 1s hoped
that new insight might be gained into the solutions particu-
larly of varlous counting and maximal-minimal problems, as
well as the answers to many other questions pertinent to

these flelds of mathematics.
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APPENDIX

In addition to the approach followed in this thesis for
linking first algebra and topology, and then algebra and
graphs, through a topological correspondence, there are several
other ways of establishing connections among these three
mathematical systems, and here we will very briefly outline
two other approaches along which some research has already
been done and from which useful results have been obtained (see
Bhargava and Ohm [6]). For definitions of special terms
related to graphs, we refer particularly to Berge [2].

First, there are many different mappings which may be
defined between the family of all halfgroupoids and the family
of all digraphs, in addition to the ones already given in
section 3.1. For example, the following three have been stud-
ied to some extent and appear to show promise of leading to
further useful results:

i) v,(H,F) = r(H,E), where (a,b) ¢ E if
((a,b),x) e F;
ii) v,(H,F) = T(H,E), where there is a path
from a to b if ((a,b),x) ¢ F;
iii) y4(H,F) = r(H,E), where (a,c) ¢ E if

((a,x),c) e F.
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It was found that of these three mappings, y3 defines the most
generally interesting relationship between halfgroupoids and
digraphs: for example, a cyclic groupoid yields a graph pos-
sessing a Hamiltonian line whose length is the order of the
generating element of the groupoid; prime elements map into
unaccessible points, and idempotents into loops; an antihalf-
groupoid is related to the kernel of a graph, and associativity
or commutativity of the halfgroupoid operation to the valency
or denslity of vertices in the graph.

The second main approach investigated was that of linking
algebra and topology through a two-sided ideal topology on a
halfgroupoid, and theorems corresponding to those appearing in
Chapter Two were first obtained using these two-sided ideals.
However, it was then observed that, by considering the more
general case of a one-sided ideal, a topology could still be
obtained, and, furthermore, that by using a modified version
of the mapping y;, the topological correspondence as described
in section 3.1 could be obtained.

Thus it was a combination of the two approaches outlined
above that was finally followed in developing this thesis.
However, it is still felt that the many various possible rela-
tionships between these different mathematical fields should
be further explored, in order to obtain whatever results which

may be of value when applied to various situations.



